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Abstract. We determine the nilpotent BRST and anti-BRST transformations for the Cho–Faddeev–Niemi
variables for the SU(2) Yang–Mills theory based on the new interpretation given in a previous paper of the
Cho–Faddeev–Niemi decomposition. This gives a firm ground for performing the BRST quantization of
the Yang–Mills theory written in terms of the Cho–Faddeev–Niemi variables. We propose also a modified
version of the new maximal Abelian gauge which could play an important role in the reduction to the
original Yang–Mills theory.

PACS. 12.38.Aw, 12.38.Lg

1 Introduction

The change of variables is known to be a useful method
of extracting the most relevant degrees of freedom to the
physics in question. A proposal along this direction for the
topological degrees of freedom in Yang–Mills theory was
first made by Cho [1], which has recently been readdressed
by Faddeev and Niemi [2], and another one by Faddeev and
Niemi [3]. The former is called the Cho–Faddeev–Niemi
(CFN) decomposition in the literature, while the latter is
called the Faddeev–Niemi decomposition. We focus on the
former in this paper.

In applying the CFN decomposition, however, there was
much controversy [4,5] over the treatment and the interpre-
tation. A lot of progress toward the resolution of the concep-
tual issues was already made in [8,11], while the CFN de-
composition was applied to reveal various non-perturbative
features overlooked so far [3,5–8,11,12]. For example, the
Skyrme–Faddeev model [6] describing the glueball as a
knot soliton solution may be deduced from the Yang–Mills
theory by way of the CFN decomposition [3,5,7,8,11,12].
Moreover, the instability of the Savvidy vacuum [9] disap-
pears by eliminating a tachyon mode [10]; see [11] for the
massless gluon and [12, 13] for the massive gluon caused
by a novel magnetic condensation.

In the previous paper [14], we have given a new interpre-
tation of the Yang–Mills theory written in terms of the CFN
variables, called the CFN–Yang–Mills theory. This inter-
pretation enables us to elucidate how the CFN–Yang–Mills
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theory with the enlarged local gauge symmetry is reduced
to the gauge theory with the same local and global gauge
symmetries (Yang–Mills theory II) as the original Yang–
Mills theory (Yang–Mills theory I). In fact, this is achieved
by imposing a new version of the maximal Abelian gauge
(new MAG), which plays a role quite different from the
conventional MAG [15, 16]. The new interpretation dis-
poses of the pending question of the discrepancy between
the CFN–Yang–Mills theory and the original Yang–Mills
theory for independent degrees of freedom.

In the paper [13], we have already discussed how to
perform the numerical simulations based on this interpre-
tation and we have actually performed the Monte Carlo
simulations on a lattice. This is the first implementation
of the CFN decomposition on a lattice.

In this paper, moreover, we will discuss how to per-
form the BRST quantization of the CFN–Yang–Mills the-
ory in the continuum formulation, as announced in [14].
For this purpose, we must first determine the nilpotent
BRST transformations for the ghost–antighost fields and
the Nakanishi–Lautrup auxiliary fields, in addition to those
for the original CFN variables. Here it should be remarked
that we must introduce more ghost and antighost fields
reflecting the enlarged local gauge symmetry of the CFN–
Yang–Mills theory. These BRST transformations are de-
termined independently from the gauge fixing condition,
i.e., the new MAG, as usual.

In order to fix the whole of the gauge degrees of freedom
of the CFN–Yang–Mills theory, we must impose one more
gauge-fixing condition, e.g., the Lorentz covariant gauge
∂µAµ = 0, in addition to the new MAG. The additional
gauge fixing is necessary to fix the local gauge symmetry II
in the Yang–Mills theory II which is obtained by taking the
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new MAG from the CFN–Yang–Mills theory. Then, we can
obtain the explicit form of the Faddeev–Popov (FP) ghost
terms associated to two gauge-fixing conditions, once the
additional gauge-fixing condition is specified. Therefore,
we can uniquely determine the total Lagrangian, based on
which the BRST quantization is performed.

Moreover, we introduce another gauge transformation
and the corresponding BRST transformation, called
the primed transformations. This gives an alternative but
equivalent description of the gauge and BRST symmetries
of the CFN–Yang–Mills theory. Finally, we determine also
the nilpotent anti-BRST transformation for the CFN vari-
ables. As an application, we propose a modified version
of the new MAG, which is both BRST and anti-BRST
exact simultaneously.

2 Yang–Mills theory in the CFN decomposition

2.1 Local gauge symmetry in terms
of the CFN variables

The Cho–Faddeev–Niemi (CFN) decomposition (or change
of variables) of the original Yang–Mills gauge field Aµ(x)
is performed as follows. We restrict our considerations to
the gauge group G = SU(2). First, we introduce a unit
vector field n(x), i.e.,

n(x) · n(x) := nA(x)nA(x) = 1 (A = 1, 2, 3). (1)

Then the CFN decomposition is written in the form

Aµ(x) = cµ(x)n(x) + g−1∂µn(x) × n(x) + Xµ(x), (2)

where Xµ(x) is perpendicular to n,

n(x) · Xµ(x) = 0. (3)

For later convenience, we introduce

Vµ(x) = Cµ(x) + Bµ(x)

= cµ(x)n(x) + g−1∂µn(x) × n(x). (4)

The first important observation made in [14] is that the
restricted potential cµ and the gauge covariant potential
Xµ are specified by n and Aµ:

cµ(x) = n(x) · Aµ(x), (5)

Xµ(x) = g−1n(x) × Dµ[A]n(x), (6)

and, therefore, the local gauge transformations δcµ and δXµ

are uniquely determined, once only the transformations δn
and δAµ are specified. This fact indicates the special role
played by the n field in the gauge transformation.

In the previous paper [14], we have considered the lo-
cal gauge symmetry respected by the Yang–Mills theory
expressed in terms of the CFN variables, which we call
CFN–Yang–Mills theory for short. We have shown [14] that
the CFN–Yang–Mills theory has the local gauge symmetry
SU(2)ω

local × [SU(2)/U(1)]θlocal which is larger than the local

SU(2) symmetry of the original Yang–Mills theory, since
we can rotate the CFN variable n(x) by the angle θ⊥(x)
independently of the gauge transformation parameter ω(x)
of Aµ(x). Here the local gauge transformations of the CFN
variables are given by

δAµ(x) = Dµ[A]ω(x), (7a)

δn(x) = gn(x) × θ(x) = gn(x) × θ⊥(x), (7b)

δcµ(x) = g(n(x) × Aµ(x)) · (ω⊥(x) − θ⊥(x))

+n(x) · ∂µω(x), (7c)

δXµ(x) = gXµ(x) × (ω‖(x) + θ⊥(x))

+Dµ[V](ω⊥(x) − θ⊥(x)), (7d)

where ‖ and ⊥ denote the parallel and perpendicular part
to n, and we have applied the gauge transformation (7a)
and (7b) to (5) and (6) to obtain (7c) and (7d). If ω⊥(x) =
θ⊥(x), the transformations (7c) and (7d) reduce to gauge
transformation II [12, 14] with the parameter ω′(x) =
(ω‖(x),ω⊥(x) = θ⊥(x)). Therefore, the gauge transfor-
mation II corresponds to the special case ω⊥(x) = θ⊥(x).

Local gauge transformation II is

δ′
ωn = gn × ω′, (8a)

δ′
ωcµ = n · ∂µω′, (8b)

δ′
ωXµ = gXµ × ω′, (8c)

=⇒ δ′
ωVµ = Dµ[V]ω′. (8d)

This should be compared with1 local gauge transforma-
tion I:

δωn = 0, (9a)

δωcµ = n · Dµ[A]ω, (9b)

δωXµ = Dµ[A]ω − n(n · Dµ[A]ω), (9c)

=⇒ δωVµ = n(n · Dµ[A]ω). (9d)

2.2 A new interpretation of the CFN–Yang–Mills theory

In order to obtain the gauge theory with the same lo-
cal gauge symmetry as the original Yang–Mills theory,
therefore, we proceed by imposing a gauge-fixing condition
by which SU(2)ω

local × [SU(2)/U(1)]θlocal is broken down to
SU(2) which is a subgroup of SU(2)ω

local×[SU(2)/U(1)]θlocal.
In the previous paper [14], we have found that a way to do
this is to impose the minimizing condition

0 = δ

∫
dDx

1
2

X
2
µ, (10)

1 Gauge transformation I was called the passive or quan-
tum gauge transformation, while II was called the active or
background gauge transformation. However, this classification
is sometimes confusing and could lead to misleading results,
since the two gauge transformations I and II are not indepen-
dent.
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which we called the new maximal Abelian gauge (new
MAG). This is shown as follows. Since the relationship (6)
leads to g2

X
2
µ = (Dµ[A]n)2, the local gauge transformation

of X
2 is calculated to be

δ
1
2

X
2
µ = g−1(Dµ[A]n) · {Dµ[A](ω⊥ − θ⊥) × n}, (11)

where we have used (7b) and (7a). Therefore, the local
gauge transformation II does not change X

2. Then the
average over the spacetime of (11) reads

δ

∫
dDx

1
2

X
2
µ = −

∫
dDx(ω⊥ − θ⊥) · Dµ[V]Xµ, (12)

where we have used (6) and integration by parts. Hence the
minimizing condition (10) for arbitrary ω⊥ and θ⊥ yields
a condition in the differential form

FMA = χ := Dµ[V]Xµ ≡ 0. (13)

Note that (13) denotes two conditions, since n · χ = 0
which follows from the identity n·Dµ[V]Xµ = 0. Therefore,
the minimization condition (10) works as a gauge-fixing
condition except for gauge transformation II, i.e., ω⊥(x) =
θ⊥(x). For ω⊥(x) = θ⊥(x), the condition (13) transforms
covariantly, δχ = gχ×(ω‖ +ω⊥) = gχ×ω. Here the local
rotation of n, δn(x) = gn(x) × θ⊥(x), leads to δχ = 0 on
χ = 0. Here the U(1)ω

local part in SU(2)ω
local is not affected by

this condition. Hence, the gauge symmetry corresponding
to ω‖(x) remains unbroken.

Therefore, if we impose the condition (10) to the CFN–
Yang–Mills theory, we have a gauge theory (Yang–Mills
theory II) with the local gauge symmetry SU(2)ω=θ

local corre-
sponding to the gauge transformation parameter ω(x) =
(ω‖(x),ω⊥(x) = θ⊥(x)), which is a diagonal SU(2) part of
the original SU(2)ω

local × [SU(2)/U(1)]θlocal. The local gauge
symmetry SU(2)ω=θ

local of the Yang–Mills theory II is the
same as gauge symmetry II.

3 BRST symmetry
and Faddeev–Popov ghost term

According to the clarification of the symmetry in the CFN–
Yang–Mills theory explained above, we can obtain the
unique Faddeev–Popov ghost term associated to the gauge
fixing adopted in quantization. This is an advantage of our
interpretation of the CFN–Yang–Mills theory.

3.1 Determination of BRST transformations

We introduce two kinds of ghosts, Cω and Cθ corresponding
to ω and θ, respectively. Then, by requiring

n · Cθ = 0, (14)

the BRST transformations for Aµ and n are determined
as follows:

δBAµ = Dµ[A]Cω, δBn = gn × Cθ. (15)

3.1.1 ω sector

By imposing the nilpotency for Aµ, i.e., δ2
BAµ ≡ 0, we can

determine the BRST transformation for Cω:

δBCω = − g

2
Cω × Cω. (16)

as in the usual case. The nilpotency for Cω, i.e., δ2
BCω ≡ 0

can be checked in the same way as in the usual case.
In a way similar to the ordinary case, we can intro-

duce the antighost C̄ω and the Nakanishi–Lautrup (NL)
auxiliary field Nω obeying the BRST transformations:

δBC̄ω = iNω, δBNω = 0. (17)

The nilpotency for C̄ω and Nω is trivial, i.e., δ2
BC̄ω ≡ 0

and δ2
BNω ≡ 0.

3.1.2 θ sector

First, imposing the nilpotency for n yields the relation

0 ≡ δ2
Bn = gn × δBCθ, (18)

where we have used n · Cθ = 0 and Cθ · Cθ = 0. Second,
requiring δB(n · Cθ) = 0, i.e.,

0 ≡ δB(n · Cθ) = n · (gCθ × Cθ + δBCθ), (19)

leads to another relation,

δBCθ = −gCθ × Cθ + f⊥, (20)

where f⊥ denotes an arbitrary function perpendicular to
n. Substituting the relation (20) into (18), we have

n × δBCθ = n × f⊥ = 0, (21)

implying f⊥ = 0. Hence the BRST transformation for Cθ

is determined as

δBCθ = −gCθ × Cθ, (22)

where Cθ × Cθ is parallel to n due to (18) and (22).2The
nilpotency δ2

BCθ ≡ 0 can be checked without difficulty.
We introduce the antighost C̄θ and the NL field Nθ

such that they have the BRST transformations

δBC̄θ = iNθ, δBNθ = 0. (23)

2 Alternatively, (22) is shown as follows. The decomposition
of the BRST transformation of Cθ into the parallel and per-
pendicular parts to n yields

δBCθ = (n · δBCθ)n + (n × δBCθ) × n = −g{n · (Cθ × Cθ)}n

= −gCθ × Cθ,

where we have used (18) and (19), i.e., n·δBCθ = −gn·(Cθ×Cθ),
in the second equality, and we have used the fact that Cθ × Cθ

is parallel to n in the last step.
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The nilpotency for C̄θ and Nθ is trivial, i.e., δ2
BC̄θ ≡ 0

and δ2
BNθ ≡ 0.

We have not yet imposed any conditions on C̄θ, Nθ,
although we imposed n · Cθ = 0 on Cθ. Note that C̄θ and
Nθ are not necessarily perpendicular to n. In light of the
fact that Cθ has two degrees of freedom, we impose

n · C̄θ = 0 (24)

and δB(n · C̄θ) ≡ 0. Then we find

0 ≡ δB(n · C̄θ) = n · (gCθ × C̄θ + δBC̄θ)

= n · (gCθ × C̄θ + iNθ). (25)

This condition implies that the parallel component N
‖
θ is

non-zero and written in terms of Cθ, C̄θ and n as follows:

N
‖
θ := n(n · Nθ) = ign[n · (Cθ × C̄θ)]

= ig(Cθ × C̄θ), (26)

where we have used the fact that Cθ × C̄θ is parallel to
n, since n · Cθ = 0 = n · C̄θ. Therefore, N

‖
θ is not the

independent degree of freedom.

3.1.3 Summarizing BRST transformations

Thus we have determined the nilpotent BRST transfor-
mations for the CFN variables based on a new interpreta-
tion [14] of the CFN–Yang–Mills theory.

The CFN variables obey the BRST transformations:

δBn = gn × C
⊥
θ , (27a)

δBcµ = g(n × Aµ) · (C⊥
ω − C

⊥
θ ) + n · ∂µCω, (27b)

δBXµ = gXµ × (C‖
ω + C

⊥
θ ) + Dµ[V](C⊥

ω − C
⊥
θ ),

(27c)

which are supplemented by the BRST transformations in
the ω sector

δBCω = − g

2
Cω × Cω, (27d)

δBC̄ω = iNω, (27e)

δBNω = 0, (27f)

and the BRST transformations in the θ sector

δBC
⊥
θ = −gC

⊥
θ × C

⊥
θ , (27g)

δBC̄
⊥
θ = iN⊥

θ − gC
⊥
θ × C̄

⊥
θ , (27h)

δBN
⊥
θ = gN

⊥
θ × Cθ − g2i(Cθ · C̄θ)Cθ

= g(N⊥
θ − igCθ × C̄θ) × Cθ

= −δBN
‖
θ, (27i)

where we have explicitly written the BRST transformation
of the perpendicular N

⊥
θ component in conjunction to the

parallel N
‖
θ component.3 Here C

⊥
θ , C̄

⊥
θ and N

⊥
θ have two

independent degrees of freedom perpendicular to n.

3.2 Gauge-fixing and FP ghost term

The gauge-fixing (GF) and the associated Faddeev–Popov
(FP) ghost term is written as follows:

LGF+FP = Lω
GF+FP + Lθ

GF+FP, (28a)

Lω
GF+FP := −iδB(C̄ω · Fω) = −iδB(C̄ω · ∂µAµ), (28b)

Lθ
GF+FP := −iδB(C̄θ · Fθ) = −iδB(C̄θ · Dµ[V]Xµ).

(28c)

The first term Lω
GF+FP is calculated in a way similar to

the ordinary Lorentz gauge as follows:

Lω
GF+FP = Nω · ∂µAµ + iC̄ω · ∂µDµ[A]Cω. (29)

In calculating the second term Lθ
GF+FP, a useful obser-

vation is that the new MAG condition Fθ = Dµ[V]Xµ can
be rewritten in terms of Aµ and n as

Fθ = Dµ[V]Xµ = Dµ[A]Xµ

= g−1Dµ[A](n × Dµ[A]n)

= g−1n × Dµ[A]Dµ[A]n. (30)

Then, it is straightforward but a little bit tedious to
show that

Lθ
GF+FP = N

⊥
θ · (Dµ[V]Xµ) (31)

−iC̄θ · Dµ[V − X]Dµ[V + X](Cθ − Cω),

where we have used that C̄θ · n = 0 = Cθ · n and n ·
Dµ[A]n = 0 . This is one of the main results of this paper.

Note that Lθ
GF+FP includes the ghost field Cω which

cannot be eliminated from (31) by shifting the variable:
Cθ → Cθ − Cω. This is because Cω has three degrees of
freedom, while Cθ has two degrees of freedom.

In the one-loop calculation, however, we can eliminate
Cω by shifting Cθ → Cθ−C

⊥
ω , if we treat V as a background

and X, C, C̄ as the quantum fluctuation around it:

Lθ
GF+FP

= N
⊥
θ · (Dµ[V]Xµ) − iC̄θ · Dµ[V]Dµ[V](Cθ − Cω)

+ . . .

= N
⊥
θ · (Dµ[V]Xµ) − iC̄θ · Dµ[V]Dµ[V](Cθ − C

⊥
ω )

3 Equation (27i) is obtained from the nilpotency for C̄θ:

0 ≡ δ2
BC̄θ = iδBNθ = iδB(N⊥

θ + N
‖
θ)

= iδB(N⊥
θ + igCθ × C̄θ)

= iδBN
⊥
θ + igCθ × N

⊥
θ − g2(Cθ · C̄θ)Cθ.
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+ . . .

= N
⊥
θ · (Dµ[V]Xµ) − iC̄θ · Dµ[V]Dµ[V]Cθ

+ . . . (32)

Thus, the previous result in the one-loop level [12] is not
affected by the correct treatment of the FP ghost term.

Moreover, observingδB(Nω·Nω) = 0, δB(Nθ·Nθ) = 0,
and δB(Nθ+ζNω)2 = 0, we are allowed to add the following
term to the GF + FP term:

LN :=
α

2
(Nω + ζNθ) · (Nω + ζNθ) +

β

2
Nω · Nω. (33)

The usefulness of this term is demonstrated in the modified
new MAG in the final part of this paper.

4 Primed gauge and BRST transformations

4.1 Primed gauge transformations

Another way to describe the gauge transformation prop-
erty of the CFN–Yang–Mills theory in terms of the CFN
variables (n, cµ, Xµ) is to introduce

ω′ := ω‖ + θ⊥, θ′ := ω⊥ − θ⊥, (θ′ · n = 0), (34)

rather than ω and θ. The relation between the two sets of
gauge transformation parameters,

ω′ + θ′ = ω‖ + ω⊥ = ω, (35a)

n × (ω′ × n) = ω′
⊥ = θ⊥ = θ, (35b)

yields another view of the local gauge transformations:

δAµ = Dµ[A](ω′ + θ′), (36a)

δn = gn × ω′
⊥ = gn × ω′, (36b)

δcµ = g(Aµ × n) · θ′ + n · ∂µ(ω′ + θ′), (36c)

δXµ = gXµ × ω′ + Dµ[V]θ′. (36d)

In fact, θ′ = 0, i.e., ω⊥ = θ⊥ reproduces the local gauge
transformation II.

4.2 Primed BRST transformations

By introducing the ghost fields C
′
ω and C

′
θ corresponding to

ω′ and θ′ respectively, we can introduce the BRST trans-
formations of the CFN variables (n, cµ, Xµ) in addition to
the original Yang–Mills field Aµ. We have

δBAµ = Dµ[A](C′
ω + C

′
θ), (37a)

δBn = gn × C
′
ω, (37b)

δBcµ = g(Aµ × n) · C
′
θ + n · ∂µ(C′

ω + C
′
θ), (37c)

δBXµ = gXµ × C
′
ω + Dµ[V]C′

θ. (37d)

In a way similar to the above, the BRST transformations
of the ghost fields, C

′
ω, C

′
θ, and antighost fields, C̄

′
ω, C̄

′
θ,

can be determined as well as the NL fields N
′
θ, N

′
ω:

δBC
′
θ = −gC

′
ω × C

′
θ, (37e)

δBC̄
′
θ = iN′

θ, (37f)

δBN
′
θ = 0, (37g)

δBC
′
ω = − g

2
(C′

ω × C
′
ω + C

′
θ × C

′
θ), (37h)

δBC̄
′
ω = iN′

ω, (37i)

δBN
′
ω = 0, (37j)

where n · C
′
θ = 0 = n · C̄

′
θ, n · N

′
θ = ign · (C′

θ × C̄
′
θ).

4.3 Primed gauge fixing and FP ghost term

We impose two gauge fixing conditions: F
′
ω = Fω = ∂µAµ

for fixing the gauge degrees of freedom ω′ and F
′
θ = Fθ =

Dµ[V]Xµ for fixing gauge degrees of freedom θ′. Then we
can obtain the primed GF + FP term in a way similar to
the one above,

LGF+FP = L′
ω + L′

θ,

L′
ω := −iδB(C̄′

ω · Fω) = −iδB(C̄′
ω · ∂µAµ) (38)

= N
′
ω · ∂µAµ + iC̄′

ω · ∂µDµ[A](C′
ω + C

′
θ),

L′
θ := −iδB(C̄′

θ · Fθ) = −iδB(C̄′
θ · Dµ[V]Xµ)

= N
′
θ · Dµ[V]Xµ

+iC̄′
θ · {g(Dµ[V]Xµ) × (C′

ω − C
′
θ)

+Dµ[V − X]Dµ[V + X]C′
θ}. (39)

The second term is further rewritten as

L′
θ = N

′
θ · Dµ[V]Xµ

+iC̄′
θ · {−g(C′

ω)‖ × (Dµ[V]Xµ)

+Dµ[V − X]Dµ[V + X]C′
θ}

= N
′
θ · Dµ[V]Xµ (40)

+iC̄′
θ · Dµ[V − X]Dµ[V + X]{C

′
θ + (C′

ω)‖}.

Note that (38) and (40) agree with (29) and (31) under
the identification

Cω = C
′
ω + C

′
θ, Cθ = (C′

ω)⊥. (41)

This is expected from the observation of the correspon-
dence between the original parameters and ghosts ω → Cω,
θ → Cθ, and the primed parameters and ghosts ω′ → C

′
ω,

θ′ → C
′
θ. This can be a cross-check for the correctness of

our calculations.
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5 Anti-BRST transformation
and its application

By the formal replacement C → C̄, C̄ → C and N → N̄,
we begin to determine the anti-BRST transformation.

5.1 Anti-BRST transformation

The anti-BRSTtransformations forω sector are obtained as

δ̄BAµ = Dµ[A]C̄ω, (42a)

δ̄BC̄ω = − g

2
C̄ω × C̄ω, (42b)

δ̄BCω = iN̄ω, (42c)

δ̄BN̄ω = 0. (42d)

We require {δB, δ̄B} = 0 to obtain the relationship be-
tween N and N̄. For Aµ, using δBδ̄BAµ = δB(Dµ[A]C̄ω) =
iDµ[A]Nω + gDµ[A]Cω × C̄ω, we obtain

0 ≡ (δBδ̄B + δ̄BδB)Aµ

= iDµ[A](Nω + N̄ω − igCω × C̄ω), (43)

yielding the relation

Nω + N̄ω = igCω × C̄ω. (44)

On the other hand, the anti-BRST transformations for the
θ sector are found to be

δ̄Bn = gn × C̄
⊥
θ , (45a)

δ̄BC̄
⊥
θ = −gC̄

⊥
θ × C̄

⊥
θ , (45b)

δ̄BC
⊥
θ = iN̄⊥

θ , (45c)

δ̄BN̄
⊥
θ = 0, (45d)

where N̄θ have two independent degrees of freedom
N̄

⊥
θ , since

N
‖
θ = ign[n · (C̄⊥

θ × C
⊥
θ )] = igC̄

⊥
θ × C

⊥
θ . (46)

Forn, we calculateδBδ̄Bn = δB(gn×C̄
⊥
θ ) = −g2n(C⊥

θ ·
C̄

⊥
θ ) + ign × Nθ, and hence

0 ≡ (δBδ̄B + δ̄BδB)n = ign × (Nθ + N̄θ), (47)

which implies the relationship

N
⊥
θ + N̄

⊥
θ = 0, Nθ + N̄θ = N

‖
θ + N̄

‖
θ = 2igC

⊥
θ × C̄

⊥
θ . (48)

We have checked that the requirement δBδ̄B + δ̄BδB ≡ 0
leads to no new relations among the fields.

5.2 Modified new MAG

As an application of the anti-BRST transformation, we
propose a modified version [17] of the new MAG:

SGF+FP

=
∫

dDxiδBδ̄B
( 1

2 Xµ · X
µ
)

=
∫

dDx i−1δB[(C̄ω − C̄
⊥
θ ) · Dµ[V]Xµ]

=
∫

dDx
{

(N⊥
ω − N

⊥
θ ) · (Dµ[V]Xµ) (49)

−i(C̄⊥
ω − C̄

⊥
θ ) · Dµ[V − X]Dµ[V + X](C⊥

θ − Cω)
}

.

This term is exact simultaneously in the BRST and anti-
BRST transformation and invariant under the FP conjuga-
tion. This form of the FP term can be cast into a simplified
form by taking an appropriate linear combination of two
NL fields, N

⊥
ω and N

⊥
θ , in (33) and by integrating out the

NL fields.

6 Conclusion

In this paper we have determined the BRST and anti-
BRST transformations of the CFN variables and those
of the associated ghost, antighost and Nakanishi–Lautrup
auxiliary fields. The general form of the gauge-fixing term
for the new MAG and the correct form of the associated
FP term are obtained explicitly based on the new inter-
pretation [14] of the CFN–Yang–Mills theory. Although
the general form is different from the previous one [12], it
reduces in the one-loop level to the same form as that given
in [12] and does not change the main result [12] obtained
based on the one-loop expression. Finally, a modified form
of the new MAG has been proposed using the BRST and
anti-BRST transformations.
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